• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
微信公众号

微信公众号

一种电磁频谱管理盲监测技术

杨保平, 陈永光, 孙光, 杨鸾

杨保平, 陈永光, 孙光, 杨鸾. 一种电磁频谱管理盲监测技术[J]. 电波科学学报, 2014, 29(4): 786-791. doi: 10.13443/j.cjors.2013081501
引用格式: 杨保平, 陈永光, 孙光, 杨鸾. 一种电磁频谱管理盲监测技术[J]. 电波科学学报, 2014, 29(4): 786-791. doi: 10.13443/j.cjors.2013081501
YANG Baoping, CHEN Yongguang, SUN Guang, YANG Luan. A blind monitoring technology for electromagnetic spectrum management[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2014, 29(4): 786-791. doi: 10.13443/j.cjors.2013081501
Reference format: YANG Baoping, CHEN Yongguang, SUN Guang, YANG Luan. A blind monitoring technology for electromagnetic spectrum management[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2014, 29(4): 786-791. doi: 10.13443/j.cjors.2013081501

一种电磁频谱管理盲监测技术

详细信息
    通信作者:

    杨保平 E-mail:ybp_2000@sina.com

A blind monitoring technology for electromagnetic spectrum management

  • 摘要: 复杂电磁环境下对无线电信号进行监测时,基于时频分析的传统监测方式对频谱混叠信号难以进行识别.针对这一问题,提出了一种电磁频谱管理盲监测技术.在分析研究了盲源分离的理论基础上建立了基于最大信噪比算法的盲监测模型,基于该模型仿真实现了6路频谱混叠无线电信号的分离提取.仿真结果表明:应用所建立的模型能够实现频谱混叠无线电信号的监测分析,判明所监测无线电设备的工作频率、信号形式和带宽等主要特征.
    Abstract: The conventional monitoring method based on timefrequency analysis is difficult to recognize the spectrum overlapping radio signals under the condition of battlefield complex electromagnetic environment. A blind monitoring technology for electromagnetic spectrum management is proposed. The blind source separation(BSS) technique is analyzed theoretically and the blind monitoring model based on the algorithm of maximum signal-to-noise ratio is given. Applying the processing model, simulation is performed to separate and extract the six spectrum overlapping radio signals. The simulation demonstrates the presented BSS processing model can be used to monitor and analyze spectrum overlapping radio signals and enables a means for signal recognition. The parameters of radio equipment such as frequency, signal type, bandwidth and so on can be judged using the method.
  • 董庆生. 电波与信息化[M]. 1版. 北京: 航空工业出版社, 2009: 93-97.
    AARDAL K I, VAN HOESEL C P M, KOSTER A M C A. Models and solution techniques for the frequency assignment problem[J]. Journal 4OR: Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 2003, 1(4): 261-317.
    HYVARINEN A, KARHUNEN J, OJA E. Independent component analysis [M]. New York: Wiley, 2001.
    史习智. 盲信号处理理论与实践[M]. 上海: 上海交通大学出版社, 2008.
    张贤达, 保铮. 盲信号分离[J]. 电子学报, 2001, 29(12A): 1766-1771.ZHANG Xianda, BAO Zheng. Blind source separation[J]. Acta Electronica Sinica, 2001, 29(12A): 1766-1771.(in Chinese)
    杨福生, 洪波. 独立分量分析的原理与应用[M]. 北京: 清华大学出版社, 2006.
    段哲民, 马裕, 彭斌, 等. 基于盲源分离的商业销售计算机仿真分析[J]. 计算机仿真, 2009, 26(11): 308-311.DUAN Zhemin, MA Yu, PENG Bin, et al. Computer simulation analysis of commercial sales based on blind source separation[J]. Computer Simulation, 2009,26 (11): 308-311.(in Chinese)
    KULCZYK W K. Signal noise ratio in laser doppler systems[J]. Proceedings of the Institution of Electrical Engineers, 1973, 9.
    ZALOGIN N N. Calculation of the signal noise ratio for random signal double spectral analysis radar[J]. Radio-technical Electronic, 1993, 12(38): 278-286.
    PLAPOUS C, MARRO C. Improved signal-to-noise ratio estimation for speech enhancement[J]. IEEE Transactions on Audio, Speech and Language Processing, 2006, 6(14): 1024-1029.
    SUH J. Maximum signal-to-noise ratio array processing for space-time coded systems[J]. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2000, 9(1): 693-697.
    VACLAV M. Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing[J]. Ultrasonics, 2009, 12(49): 752-759.
    高剑茹, 高宝成. 基于最大信噪比的盲源分离算法的修正与比较[J]. 电脑与信息技术, 2009, 17(1):19-21.GAO Jianru, GAO Baocheng. Revision and Comparison of blind source separation algorithm based on maximum signal noise ratio [J]. Computer and Information Technology, 2009, 17(1): 19-21.(in Chinese)
    CHEUNG Y M,LIU H. A new approach to blind source separation with global optimal property[J]. Faculty Research Grant of Hong Kong Baptist University with Project Number: FRG/01-02/II-24.
    张小兵, 马建仓, 陈翠华, 等. 基于最大信噪比的盲源分离算法[J]. 计算机仿真, 2006, 23(10): 72-75.MA Xiaobing, MA Jiancang, CHENG Cuihua, et al. A blind source separation algorithm based on maximum signal noise ratio[J]. Computer Simulation, 2006, 23(10): 72-75.(in Chinese)
    MA Jiancang, ZHANG Xiaobing. Blind source separation algorithm based on maximum signal noise ratio[C]// First International Conference on Intelligent Networks and Intelligent Systems, 2008: 625-629.
    BORGA M.Learning Multidimensional Signal Processing[M]. Linkoping: Linkoping University, 1998.
    WAX M, KAILATH T. Detection of signals by information theoretic criteria[J]. IEEE Trans ASSP, 1985, 33(2): 387-392.
    ZHAO L C, KRISHNAIAH P R,BAI Z D. On detection of the number of signals in presence of white noise[J]. Multivariate Anal, 1986, 20(1):1-25.
    WONG K M, ZHANG Q T,REILLY J P. On information theoretic criteria for determining the number of signals in high Resolution array processing[J]. IEEE Trans ASSP, 1990, 38(11):1959-1971.
    FISHER E, MESSER H.Order statistics approach for determining the number of sources using an array of sensors[J]. IEEE Signal Processing Letters, 1999, 6(7):179-182.
    FISHER E, MESSER H.On the use of order statistics for improved detection of signals by the MDL criterion[J]. IEEE Trans SP, 2000, 48(8): 2242-2247.
    BACH F R, JORDAN M I. Kernel independent component analysis[J]. Journal of Machine Learning Research, 2002, 3: 1248.
计量
  • 文章访问数:  87
  • HTML全文浏览量:  20
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-14
  • 网络出版日期:  2020-12-30
  • 发布日期:  2014-08-29

目录

    /

    返回文章
    返回