自适应奇异值分解正则化方法在等效源重构中的应用

      Application of adaptive singular value decomposition regularization in equivalent source reconstruction

      • 摘要: 传统奇异值分解(singular value decomposition, SVD)方法对转移系数矩阵进行一次性分解,未能充分考虑数据变化,且对噪声干扰较为敏感,导致重构精度受限。本文提出一种自适应SVD (adaptive SVD, ASVD)和Tikhonov正则化相结合的辐射源重构方法。该方法通过迭代分解转移系数矩阵,并基于最大奇异值设定阈值,实现对SVD分解的动态调整,有效抑制因小奇异值引起的数值误差。同时,本文系统分析了正则化参数选择、 P_z 偶极子贡献、高斯白噪声干扰及工作频率变化等因素对重构精度的影响。仿真和实测结果表明,所提方法的重构幅度分量与参考结果的相对误差均控制在2.6 %以下,验证了该方法在辐射源重构中的良好精度。本研究为辐射源高精度重构提供了新的解决方案。

         

        Abstract: The traditional singular value decomposition (SVD) method decomposes the transfer coefficient matrix in one go, which fails to fully consider data changes and is sensitive to noise interference, resulting in limited reconstruction accuracy. This article proposes a radiation source reconstruction method that combines Adaptive Singular Value Decomposition (ASVD) and Tikhonov regularization. This method dynamically adjusts the SVD decomposition by iteratively decomposing the transfer coefficient matrix and setting a threshold based on the maximum singular value, effectively suppressing numerical errors caused by small singular values. At the same time, this article systematically analyzes the effects of regularization parameter selection, \boldsymbolP_\boldsymbolz dipole contribution, Gaussian white noise interference, and frequency variation on reconstruction accuracy. The simulation and actual measurement results show that the relative error between the reconstructed amplitude component of the proposed method and the reference result is controlled below 2.6%, which verifies the good accuracy of the method in radiation source reconstruction.

         

      /

      返回文章
      返回