超材料吸波体的深度学习预测模型研究

      Research on a deep neural network-based prediction method for metamaterial absorbers

      • 摘要: 提出了一种基于深度神经网络(deep neural network, DNN)的预测方法,通过学习数据到数据的映射关系,构建了一个复杂的拟合函数反映结构参数与电磁响应中潜在的物理规律,经过训练后的神经网络可以用输入参数快速预测超材料吸波体(metamaterial absorber, MMA)单元结构在工作频率的最大吸收率。深入讨论了DNN模型中关键参数的影响,以获得最小预测误差。该网络模型训练完成后,预测时间为毫秒量级,数据量仅有3兆字节,可以有效节省存储空间,平均预测误差控制在5%以下。通过对4组参数的MMA单元结构进行对照实验,能够快速、准确地获取预测值,结果与全波仿真结果一致,验证了该预测方法的有效性和可行性。与文献中提出的预测方案进行对比发现,所提出的预测方案能够实现低误差预测,还具有低训练成本的特性。

         

        Abstract: A prediction method based on a deep neural network (DNN) is studied in this paper, which constructs a complex fitting function by learning data-to-data mapping relationships to reveal the underlying physical principles between structural parameters and electromagnetic responses. The trained neural network can rapidly predict the maximum absorption rate of metamaterial absorber (MMA) unit structures at operating frequencies using input parameters. The influence of key parameters in the DNN model is thoroughly analyzed to minimize prediction errors. Upon completion of training, the network achieves millisecond-level prediction speeds with a model size of only 3 megabytes, significantly reducing storage requirements while maintaining an average prediction error below 5%. Comparative experiments on four sets of MMA unit parameters demonstrate that the method quickly and accurately generates predictions consistent with full-wave simulation results, verifying its validity and feasibility. Compared with existing prediction schemes in the literature, the proposed approach achieves low-error predictions while exhibiting reduced training costs.

         

      /

      返回文章
      返回