引入注意力机制的TCN-STT电离层TEC组合预测模型

      Attention-enhanced TCN-spatio temporal transformer model for ionospheric TEC prediction

      • 摘要: 电离层总电子含量(total electron content,TEC)是无线电波传播和航天活动中的关键参数,建立高精度的电离层TEC预测模型具有重要意义。本文利用国际GNSS服务(International GNSS Service, IGS)欧洲定轨中心(Center for Orbit Determination in Europe, CODE)提供的TEC数据,提出一种结合时空Transformer(spatio-temporal transformer, STT)与时间卷积网络(temporal convolutional network, TCN)并引入时空注意力机制的组合预测模型TCN-STT,来对TEC进行预测。本研究基于中国及周边地区2000年至2023年共8 766天的TEC数据,采用滑动窗口方法构建了8764个样本。所有样本依据Kp地磁指数(Kp<4,4≤Kp<7,Kp≥7)分为三类并进行随机抽样,确保在训练集、验证集和测试集中不同地磁活动强度的样本分布相对均匀,并最终按照8∶1∶1的比例进行划分。实验结果表明,在地磁平静期(Kp < 4),样本的RMSE均值为2.62 TECU,平均相对精度均值为90.5%;在地磁活跃期(4 ≤ Kp < 7),样本的RMSE均值增至3.94 TECU,平均相对精度均值下降至87.7%;而在地磁强扰期(Kp ≥ 7),样本的RMSE均值进一步达到8.95 TECU,平均相对精度均值降低至81.3%。总体来看,模型在测试集全部样本上的RMSE均值为2.68 TECU,平均相对精度为90.36%。此外,模型在测试集全部样本上的预测值与真实值的相关系数为0.9866,决定系数(R²)为0.9734,充分表明模型具有优秀且稳定的预测性能。

         

        Abstract: The total electron content (TEC) of the ionosphere is a critical parameter in radio wave propagation and space activities, making the development of high-precision TEC prediction models highly significant. This paper proposes a combined prediction model (TCN-STT) that integrates spatio-temporal transformer (STT) and temporal convolutional network (TCN) with a spatio-temporal attention mechanism for TEC prediction. The model is based on TEC data from the International GNSS Service (IGS) European Reference Station for a period spanning from 2000 to 2023, covering a total of 8766 days. A sliding window approach was used to generate 8764 samples. These samples were categorized into three groups based on the Kp geomagnetic index (Kp < 4, 4 ≤ Kp < 7, Kp ≥ 7), and random sampling was employed to ensure that the distribution of samples with varying geomagnetic activity levels was relatively balanced across the training, validation, and test sets. The final dataset was split in an 8:1:1 ratio. Experimental results indicate that during geomagnetic quiet periods (Kp < 4), the average RMSE of the samples is 2.62 TECU, with an average relative accuracy of 90.5%. During geomagnetic active periods (4 ≤ Kp < 7), the RMSE increases to 3.94 TECU, and the average relative accuracy drops to 87.7%. In geomagnetic disturbed periods (Kp ≥ 7), the RMSE further rises to 8.95 TECU, with the average relative accuracy decreasing to 81.3%. Overall, the model achieved an average RMSE of 2.68 TECU and an average relative accuracy of 90.36% across all test set samples. Moreover, the correlation coefficient between the predicted and true values on the entire test set is 0.9866, and the coefficient of determination (R²) is 0.9734, demonstrating that the model delivers excellent and stable predictive performance.

         

      /

      返回文章
      返回