基于内点算法的海杂波幅度分布参数估计方法

      Parameter estimation of sea clutter amplitude distribution based on interior point algorithm

      • 摘要: 航空器在海域飞行时,强度大、范围广的海杂波会严重干扰气象回波的正确识别,海杂波的幅度统计特性对于气象目标检测至关重要。为精准评估海杂波幅度统计特性进而有效抑制海杂波,本文提出了一种基于内点算法的分布模型参数估计方法。该方法将高阶海杂波统计曲线参数估计问题转为最优解求解子问题,可以实现海杂波幅度分布参数快速搜索和估计;进一步地,引入一种新的自适应调整目标函数,用于增强分布模型与实测杂波在拖尾部分的拟合效果。结合岸基多波段不同海情、不同雷达参数的实测海杂波数据统计特性,并与典型的参数估计方法和优化方法对比分析可知,本文方法可以实现实测海杂波幅度分布参数的更优估计,幅度分布曲线在拖尾处的拟合效果更优。通过对不同条件下实测杂波数据统计对比分析,验证了本文参数估计方法的普适性,实验数据表明在K分布情况下拟合精度提升率达70%。

         

        Abstract: During aircraft oversea flight, strong and widespread sea clutter can severely interfere with the correct identification of meteorological echoes. The amplitude statistical characteristics of sea clutter are crucial for the detection of meteorological targets. To accurately evaluate the amplitude statistical characteristics of sea clutter and thus effectively suppress it, this paper proposes a distribution model parameter estimation method based on the interior point algorithm. This method transforms the problem of estimating the parameters of high-order sea clutter statistical curves into sub-problems for solving the optimal solution, enabling rapid search and estimation of sea clutter amplitude distribution parameters. Furthermore, a new adaptively adjusted objective function is introduced to enhance the fitting effect of the distribution model and the measured clutter in the tail part. Combining the statistical characteristics of measured sea clutter data from shore-based multi-band radars under different sea states and radar parameters, and through a comparative analysis with typical parameter estimation and optimization methods, it can be seen that the method in this paper can achieve a better estimation of the measured sea clutter amplitude distribution parameters, and the fitting effect of the amplitude distribution curve at the tail is better. Through a comparative statistical analysis of the measured clutter data under different conditions, the universality of this parameter estimation method is verified. Experimental data show that the fitting accuracy improvement rate reaches 70% in the case of K-distribution.

         

      /

      返回文章
      返回