一种基于Matérn硬核泊松簇过程的V2I信道模型

      A V2I channel model based on Matérn hard-core Poisson cluster process

      • 摘要: 无线信道建模对于理解、设计和优化无线通信系统具有重要意义,是无线通信领域中不可或缺的一部分。为了满足车联网(vehicle to everything, V2X)环境中的通信需求,研究空间中障碍物的分布对信道衰落特性的影响,本文提出一种新的随机散射簇生成算法,即通过把Matérn硬核点过程和泊松簇过程相结合来模拟真实V2X信道中的障碍物。在算法中,依据真实环境障碍物的方位设置散射簇的坐标位置、根据周围障碍物密度可以合理设置簇内散射点数量。仿真基于传播图理论,考虑直射路径和单跳散射路径,基于信道冲激响应(channel impulse response, CIR)分别研究了功率延迟分布(power delay profile, PDP)和多普勒功率谱(Doppler power spectrum density, DPSD),并分析了不同移动轨迹下的均方根(root mean square, RMS)时延扩展的累计分布函数(cumulative distribution function, CDF),以及莱斯K因子的分布特性和角度功率谱(power angular spectrum, PAS)的分布。本文研究验证得到所提出的模型有助于分析车辆-基础设施(vehicle to infrastructure, V2I)通信场景下的时域非平稳特性,为V2X通信系统的设计和优化提供了重要参考。

         

        Abstract: Wireless channel modeling plays a critical role in understanding, designing, and optimizing wireless communication systems, serving as an indispensable component in this field. To address the communication requirements in vehicle-to-everything (V2X) environments and investigate the impact of obstacle spatial distribution on channel fading characteristics, this paper proposes a novel stochastic scattering cluster generation algorithm. The algorithm integrates the Matérn hard-core point process and the Poisson cluster process to realistically emulate obstacles in V2X channels. Specifically, the spatial coordinates of scattering clusters are configured based on the spatial distribution of real-world obstacles, while the number of scatterers within each cluster is adaptively determined by the local obstacle density. Leveraging propagation graph theory, the simulation incorporates both line-of-sight (LOS) and single-bounce scattering paths. The channel impulse response (CIR) is utilized to derive key statistical metrics, including the power delay profile (PDP) and Doppler power spectrum density (DPSD). Furthermore, the cumulative distribution function (CDF) of the root mean square (RMS) delay spread under varying vehicular trajectories is analyzed. Additionally, the statistical properties of the Rician K-factor and the power angular spectrum (PAS) are characterized in detail. Simulation results demonstrate that the proposed model effectively captures the time-domain non-stationarity in vehicle-to-infrastructure (V2I) scenarios, offering valuable insights for the design and optimization of V2X communication systems.

         

      /

      返回文章
      返回