基于粒子群优化GCN-LSTM的星间频谱预测方法

      Inter-satellite spectrum prediction based method on particle swarm optimization GCN-LSTM neural network

      • 摘要: 针对低地球轨道(low earth orbit, LEO)卫星接入地球同步轨道(geosynchronous earth orbit, GEO)卫星频谱中时存在GEO卫星频谱变化不平稳、非线性的问题,提出了一种基于改进粒子群优化(improved particle swarm optimization, IPSO)图卷积网络和长短期记忆(graph convolutional networks and long short term memory, GCN-LSTM)网络的星间频谱预测模型。该模型利用GCN-LSTM网络学习频谱数据的时频域特征,并结合自注意力机制调整关键信息的权重分配;利用非线性调整惯性权重策略和柯西变异策略改进后的粒子群算法寻优GCN-LSTM网络的第一层LSTM单元数、第二层LSTM单元数、学习率、随机失活率(dropout)和批处理量(batch_size),进而提高模型的预测准确性。利用采集的高轨卫星频谱数据集,对1 s、30 s和1 min三种频谱预测场景完成实验对比,结果表明:相较于卷积长短期记忆网络(convolutional long short term memory, ConvLSTM)基线模型,本文模型的平均绝对误差(mean absolute error, MAE)分别降低了27.00%、17.63%、17.68%,具有更好的频谱预测能力。

         

        Abstract: For the problem that geosynchronous earth orbit(GEO) satellite spectrum changes unsmoothly and nonlinearly when low earth orbit(LEO) satellite accesses GEO satellite spectrum, an improved particle swarm optimization(IPSO) based on improved particle swarm optimization, is proposed. IPSO optimizes the interstar-spectrum prediction model of graph convolutional networks and long short term memory (GCN-LSTM). The model uses GCN-LSTM network to learn the time-frequency domain characteristics of spectral data and adjust the weight allocation of key information by combining the attention mechanism. The particle swarm algorithm is improved by using the nonlinear adjustment of inertia weight strategy and Cauchy’s variance strategy seeks to optimize the number of the first layer of LSTM units, the number of the second layer of LSTM units, the learning rate, dropout and batch size, which in turn improves the prediction accuracy of the model. Using the collected high-orbit satellite spectrum dataset, experimental comparisons are completed for three spectrum prediction scenarios of 1 second, 30 seconds and 1 minute, and the results show that compared with the ConvLSTM baseline model, the mean absolute error(MAE) of the proposed model has been reduced by 27.00%, 17.63%, 17.68%, respectively, and it has better spectrum prediction capability.

         

      /

      返回文章
      返回