基于多头自注意力扩散模型的雷达图像海杂波抑制

      Sea clutter suppression for radar images based on multi-head self-attention diffusion model

      • 摘要: 为解决海杂波对雷达回波信号的严重干扰问题,提出了一种基于多头自注意力(multi-head self-attention, MHA)扩散模型的雷达图像海杂波抑制方法。以扩散模型为基础,融入MHA机制,构建MHA扩散网络模型(MHA diffusion network model, MHA-DNet),进行特征提取并学习到海杂波的特性。在IPIX雷达杂波数据集基础上仿真构建海杂波时频图像的不同目标,得到具有大数据量和随机性的图像数据集,提高模型的泛化能力,使其更具鲁棒性。在本文新提出的峰值信噪比-结构相似性指数(peak signal-to-noise ratio structural similarity index,PSNR-SSIM,简称P-S)评价指标上,MHA-DNet与传统卷积方法相比性能提升了4%,与生成对抗网络 (generative adversarial network, GAN)方法相比性能提升了1.1%,与原始的扩散模型相比,MHA-DNet也展现出了0.2%的优势,验证了本文所提方法在海杂波抑制方面具有一定的有效性。

         

        Abstract: To address the severe interference of sea clutter on radar echo signals, a sea clutter suppression for radar images based on a multi-head self-attention diffusion model is proposed. Based on the diffusion model, a multi-head self-attention diffusion network model (MHA-DNet) is developed by integrating a multi-head self-attention mechanism. which facilitates feature extraction and learning of the characteristics of sea clutter. In this study, diverse targets of ocean clutter time-frequency images are simulated based on the IPIX Radar clutter dataset, resulting in a large-scale and stochastic image dataset. This approach enhances the model generalization ability, making it more robust. On the newly proposed peak signal-to-noise ratio structural similarity index (P-S) evaluation metrics in this paper, MHA-DNet shows a high performance improvement of 4% compared with the traditional convolutional method, and 1.1% compared with the GAN adversarial network method, and even compared with the original diffusion model, MHA-DNet demonstrates a 0.2% advantage, which verifies that the method proposed in this paper has a certain degree of effectiveness in the sea clutter suppression.

         

      /

      返回文章
      返回