时变电磁场计算的隐式DTS-FVTD方法

      Implicit DTS-FVTD method for solving time dependent electromagnetic fields

      • 摘要: 为保持时间精度和提高计算效率,将双时间步(dual time-stepping, DTS)方法和隐式上下对称高斯-赛德尔迭代(lower-upper symmetric Gauss-Seidel, LU-SGS)算法引入到时域有限体积(finite-volume time-domain, FVTD)法电磁解算器中,提出一种时变电磁场计算的隐式DTS-FVTD方法。DTS法具有2阶时间精度,无条件稳定格式使物理时间步可取任意值,其取值仅须考虑时间精度要求,而定常虚拟时间导数趋于零,虚拟时间步长满足稳定性要求,由此放松了通常显式方法和网格对物理时间步长的限制。全隐格式的前后向LU-SGS算法采用大库朗数计算,并取消矩阵求逆运算从而减少了计算量和存储占用。典型二维、三维和复杂外形目标电磁散射计算结果表明,通过对物理时间步长、最大子迭代步数、子迭代收敛判据的合理选取,隐式DTS-FVTD方法能保证数值模拟精度并提升计算效率。

         

        Abstract: Dual time-stepping (DTS) with implicit lower-upper symmetric Gauss-Seidel (LU-SGS) algorithm are implemented into a finite volume time domain (FVTD) based solver to improve the computational efficiency and accuracy. The DTS is a 2nd order time stepping method and unconditionally stable, in which the selection of physical time step is only determined by the accuracy requirements. The stability in the time marching process only depends on the pseudo time step, which significantly relaxes the restriction of time step in the explicit schemes. Large Courant Friedrichs Lewyor (CFL) numbers can be used in the forward and backward sweeps, in which small storage is used and inversion of matrices are unnecessary. The typical results of 2D, 3D and complex configurations show that the computational accuracy and efficiency can be ensured by rational combinations of the physical time step, maximum sub-iterations and convergence criterion.

         

      /

      返回文章
      返回