Design of high-gain low-sidelobe wide-sector beam slotted ridge waveguide antenna array
-
摘要:
提出了一种具有高增益低副瓣的脊形波导缝隙阵列天线,中心工作频率为24.125 GHz,其包括一个八路馈电网络和一个尺寸为400 mm×65 mm的8×40辐射缝隙。通过波束合成方法提取天线阵列的期望激励分布,采用截止模式功率分配器灵活控制功率比。使用三维电磁仿真软件HFSS综合仿真计算,在中心频率处,获得仰角平面上的旁瓣电平(sidelobe level, SLL)和半功率波束宽度(half power beam width, HPBW)分别为−20.9 dB和54.5°、方位角平面上的SLL和HPBW分别为−27.8 dB和2.5°、峰值增益为23.2 dBi,仿真结果与理论分析一致。此天线可以同时实现低旁瓣的宽扇形波束,覆盖较宽的检测范围,并减轻来自其他方向的干扰,具有应用于空中探测、反无人机、气象雷达和成像雷达的潜力。
Abstract:In this paper, a slotted ridge waveguide antenna array(SRWAA) with high-gain and low-sidelobe and a center frequency of 24.125 GHz is proposed, consisting of an eight-way feeding network and an 8×40 radiating slot with a dimension of 400 mm×65 mm. The expected excitation distribution for the antenna array is extracted by beam synthesis method. By using a cut-off-mode power divider, the power ratio can be flexibly controlled. The sidelobe level(SLL) and half-power beam width(HPBW) in elevation plane are −20.9 dB and 54.5°, and the SLL and HPBW in azimuth plane are −27.8 dB and 2.5° respectively, and the peak gain is 23.2 dBi by using 3D electromagnetic simulation software HFSS. The simulation results are in good agreement with the theoretical analysis. The SRWAA can realize wide-sector beams with low-sidelobe at the same time, which covers a wide detection range and mitigate the interference from other directions. This work has the potential to be applied to air detection, antidrone, meteorological radar, and imaging radar.
-
-
表 1 四路脊形波导功分器优化后的参数值
Tab. 1 Parameter values of optimized four-way ridge waveguide power divider
mm 参数 取值 参数 取值 参数 取值 a 4.5 l1 6.00 a2 6.00 s 1.5 d1 4.83 d2 3.25 a1 7.5 s1 2.00 de 6.50 b 3.0 l2 4.00 表 2 脊形波导缝隙阵优化后参数
Tab. 2 Optimized parameters of ridge waveguide slot array
mm 编号 x 2l 编号 x 2l 1 0.05 6.40 11 0.22 6.45 2 0.07 6.42 12 0.24 6.45 3 0.09 6.45 13 0.26 6.45 4 0.10 6.40 14 0.28 6.42 5 0.12 6.40 15 0.30 6.44 6 0.14 6.42 16 0.32 6.44 7 0.15 6.42 17 0.34 6.44 8 0.17 6.42 18 0.36 6.45 9 0.19 6.42 19 0.38 6.45 10 0.20 6.45 20 0.39 6.45 -
[1] 孙禾,吴斌,吴宏伟. 基于电子波束成形的跟踪技术研究[J]. 微计算机信息,2008(1):29-31. SUN H,WU B,WU H W. Research on tracking technology base on electronic beam forming[J]. Microcomputer information,2008(1):29-31. (in Chinese)
[2] ABHISHEK S J,JENA P,VEENA D S. Tracking targets using digital beamforming[C]// Proc. 11th Int. Conf. Comput. ,Commun. Netw. Technol. (ICCCNT),Jul. 2020:1-5.
[3] HAKIMI A M,KEIVAAN A,ORAIZI H,et al. Wide-scanning circularly polarized reflector-based modulated metasurface antenna enabled by a broadband polarizer[J]. IEEE transactions on antennas and propagation,2021,70(1):84-96.
[4] YU C A,LI E S,JIN H,et al. 24 GHz horizontally polarized automotive antenna arrays with wide fan beam and high gain[J]. IEEE transactions on antennas and propagation,2018,67(2):892-904.
[5] QIN Y W,YOU Z G,ZHOU Y E,et al. Design and implemention of weather signal processing at low altitude surveillance radar[J]. Radio engineering,2014,10:71-78.
[6] EOM S Y,SON S H,JUNG Y B,et al. Design and test of a mobile antenna system with tri-band operation for broadband satellite communications and DBS reception[J]. IEEE transactions on antennas and propagation,2007,55(11):3123-3133. doi: 10.1109/TAP.2007.908819
[7] NAGHSHVARIANJAHROMI M,GHORABNI A. Easy installation CPW-fed technique for fan-beam array antenna using grounded reflector for wireless applications[J]. Journal of electromagnetic waves and applications,2014,28(16):1953-1965. doi: 10.1080/09205071.2014.948127
[8] 郝宏刚,李江,张婷,等. Ka波段被动成像天线系统设计与研究[J]. 电波科学学报,2020,35(5):738-744. HAO H G,LI J,ZHANG T,et al. Design and research of Ka band passive imaging antenna system[J]. Chinese journal of radio science,2020,35(5):738-744. (in Chinese)
[9] LI J Y,QI Y X,ZHOU S G. Shaped beam synthesis based on superposition principle and Taylor method[J]. IEEE transactions on antennas and propagation,2017,65(11):6157-6160. doi: 10.1109/TAP.2017.2754468
[10] KIM D Y,ELLIOTT R S. A design procedure for slot arrays fed by single-ridge waveguide[J]. IEEE transactions on antennas and propagation,1988,36(11):1531-1536. doi: 10.1109/8.9701
[11] KUMAR P,KEDAR A,SINGH A K. Design and development of low-cost low sidelobe level slotted waveguide antenna array in X-band[J]. IEEE transactions on antennas and propagation,2015,63(11):4723-4731. doi: 10.1109/TAP.2015.2475632
[12] FANG X,WANG W N,HUANG G L,et al. A wideband low-profile all-metal cavity slot antenna with filtering performance for space-borne SAR applications[J]. IEEE antennas and wireless propagation letters,2019,18(6):1278-1282. doi: 10.1109/LAWP.2019.2914604
[13] 魏文元. 天线原理[M]. 北京:国防工业出版社,1985:61-91. [14] YANG X Q,JIAN Y L. Superposition synthesis method for 2-D shaped-beam array antenna[J]. IEEE transactions on antennas propagation,2018,66(12):6950-6957. doi: 10.1109/TAP.2018.2871712
[15] JOSEFSSON L,RENGARAJAN S R. Slotted waveguide array antennas:theory,analysis and design[M]. SciTech Publishing Inc.,2016:93-130.
[16] LU X,GU S,WANG X C,et al. Beam-scanning continuous transverse stub antenna fed by a ridged waveguide slot array[J]. IEEE antennas and wireless propagation letters,2017,16:1675-1678. doi: 10.1109/LAWP.2017.2664880
[17] 杜勇. 消失模波导滤波器及正交模耦合器的设计[D]. 成都:电子科技大学,2011. DU Y. Design of Evanescent mode waveguide filter and ortho-mode transducer [D]. Chengdu:University of Electronic Science and Technology,2011. (in Chinese)
[18] DANIEL S E,JESÚS R G,MARIANO B E,et al. Evanescent-mode ridge-waveguide radiating filters for space applications[J]. IEEE transactions on antennas and propagation,2019,67(10):6286-6297. doi: 10.1109/TAP.2019.2920272