谱特征选择对电离层闪烁事件识别的影响分析

      Scintillation events identification based on spectral features

      • 摘要: 对闪烁事件进行快速有效识别是GNSS应用的重要需求,为此利用不同时期、不同区域、不同系统信号测量,比较分析了利用机器学习方法基于不同信号功率谱参数进行闪烁事件识别的性能。分析的不同情形中,闪烁识别模型精度最高可达98.5%,最低为91.3%,其精度均可优于90%,表明利用闪烁信号功率谱特征可建立闪烁事件的有效识别方法。进一步分析指出,降低截止频率有助于提高闪烁识别模型的精度,这表明基于谱特征进行闪烁事件识别的主要依据是Fresnel频率附近一定频谱范围内存在谱强度显著降低这一特征。这个结论也从谱分析角度说明了利用高精度GNSS参考站接收机常规观测(1 Hz)进行闪烁事件识别的可能。对闪烁功率谱进行拟合,并利用拟合的谱特征参数建立识别模型,可进一步提高闪烁事件识别精度,并减少模型所需参数。

         

        Abstract: Detecting a potential scintillation event is precondition for any following countermeasures in GNSS applications. Performance of machine learning (ML) methods to identify scintillation events is analyzed for various scenarios with measurements from different periods, areas and observing systems. It shows that signal spectrum characterizes scintillation variation fundamentally. Accuracy of different methods based on ML is generally better than 90% from test data, with the best one 98.5% and the least one 91.3%. It is also found less spectral coefficients with a lower cut-off frequency for model training contributes to better performance, indicating the descending trend exists around Fresnel frequency is the essential one to distinguish a potential scintillation event. This give evidence that precise GNSS routine observations with sampling rate of 1 Hz might be used for scintillation recognition. When a set of parameters is adopted to fit spectrum feature and then used for ML training, better performance can even be expected.

         

      /

      返回文章
      返回