梁帅帅,李磊,张蕊,等. 基于变序-交替方向分解的三维抛物方程研究[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2023281
      引用本文: 梁帅帅,李磊,张蕊,等. 基于变序-交替方向分解的三维抛物方程研究[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2023281
      LIANG S S, LI L, ZHANG R, et al. Three-dimensional parabolic equation based on reordered-alternate direction decomposition[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2023281
      Citation: LIANG S S, LI L, ZHANG R, et al. Three-dimensional parabolic equation based on reordered-alternate direction decomposition[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2023281

      基于变序-交替方向分解的三维抛物方程研究

      Three-dimensional parabolic equation based on reordered-alternate direction decomposition

      • 摘要: 蒸发波导环境下无线电波的传播预测方法及传播特性研究对海上无线电通信系统设计和应用具有十分重要的参考意义。为实现三维海上蒸发波导环境下电磁波传播的精确且高效预测,本文提出了一种基于变序-交替方向分解(reordered-alternate direction decomposition, R-ADD)的三维抛物方程电波传播预测模型。该模型通过将衍射项分解成独立的三项,对求解空间进行降维,并利用傅里叶可交换顺序的性质将步进方向的计算量降为原来的一半,从而显著提升计算效率,实现三维抛物方程的高效计算。实测结果表明,相对于传统的三维抛物方程模型,在大尺度长距离的三维海上蒸发波导环境中,该模型可在保证预测精度的同时,有效减少计算量,提高计算速度,增强预测实时性。

         

        Abstract: The study of propagation prediction methods and characteristics of radio waves in evaporation duct environment over the sea is of paramount importance for the design and application of maritime wireless communication systems. To achieve accurate and efficient prediction of electromagnetic wave propagation in a 3D maritime evaporation ducting environment, this paper introduces a 3D parabolic equation radio wave propagation prediction model based on the reordered-alternate direction decomposition technique. By decomposing the diffraction term into three independent items, the model reduces the dimension of the solution space. Taking advantage of the commutative property of the Fourier transformation, the computational load of the step-forward direction is halved, thus significantly enhancing computational efficiency and facilitating efficient calculations for the 3D parabolic equation. Empirical results demonstrate that, compared to conventional 3D parabolic equation models, this model can maintain prediction accuracy while effectively reducing computational requirements. It increases computational speed and bolsters real-time prediction capabilities, especially over large-scale long-distance 3D maritime evaporation duct environment.

         

      /

      返回文章
      返回