文章编号 1005-0388(2012)05-1049-07

机载下视阵列合成孔径雷达成像的 微多普勒效应

杨 俭1,2 侯海平3 曲长文1 周 强1 冯 万2

(1.海军航空工程学院电子信息工程系,山东 烟台 264001;2.94638 部队,江西 南昌 330201; 3.91039 部队,北京 102401)

摘 要 机载阵列合成孔径雷达(SAR)采用机翼共形天线,机翼振动会引起回波相 位误差而导致成像散焦。基于微多普勒模型和时频分析方法,研究了机载下视阵列 调频连续波(FMCW)SAR 成像的微多普勒效应。对振动模型进行了建模,结合阵元 振动几何模型分析了信号特点,并基于时频分析方法对下视阵列 FMCW SAR 的微 多普勒效应进行了成像仿真分析。结果表明,该方法可准确估计下视阵列 SAR 天线 振动误差。

关键词 阵列 SAR;下视;微多普勒;时频分析 中图分类号 TN957 **文献标志码** A

Micro-Doppler effect for airborne downward-looking array SAR imaging

YANG Jian^{1,2} HOU Haiping³ QU Changwen¹ ZHOU Qiang¹ FENG Wan²

(1. Department of Electronic and Information Engineering, Naval Aeronautical & Astronautical University, Yantai Shandong 264001, China; 2. 94638 Unit PLA, Nanchang Jiangxi 330201, China; 3. 91039 Unit PLA, Beijing 102401, China)

Abstract Imaging defocusing may occur due to phase error induced by vibration of conformal antenna array fixed on wings of airborne array synthetic aperture radar (SAR). Micro-Doppler effect of airborne downward-looking array frequency modulated continuous wave (FMCW) SAR imaging is studied based on micro-Doppler model and time-frequency analysis method. Vibration model is established combined with array antenna vibration geometry model, and signal characteristic is analyzed. Then, imaging simulation and analysis of micro-Doppler effect are carried out based on time-frequency analysis method. Results indicate that the proposed method can realize accurate estimation of the antenna array vibration error.

Key words array SAR; downward-looking; micro-Doppler; time-frequency analysis

引 言

为满足日新月异的电子侦察及电磁对抗等军事 需求,越来越多的机载雷达采用天线阵列技术。例 如,法国正在研制的 STEMME S10-VT 无人机平 台搭载的下视阵列合成孔径雷达(SAR)系统就采用 了与机翼共形的天线阵列^[1]。沿机翼布设多通道天 线阵列的下视阵列 SAR 系统,可以克服常规 SAR

收稿日期: 2011-12-09

基金项目: "泰山学者"建设工程专项基金资助

联系人:杨俭 E-mail:yangjian2575@163.com

系统只能获取实际场景二维投影的缺陷,实现对场 景的三维成像^[2],是国内外的研究热点^[3-4]。调频连 续波(FMCW)雷达具有可靠性高、体积小及成本低 等优势^[5-8],采用毫米波段后易于实现高紧凑的阵列 天线模块^[1],十分符合阵列 SAR 小型化的需求,已 被无人机微型 SAR 系统广泛采用^[9]。

雷达回波中存在两种微多普勒效应^[10-11],一种 是由目标的机械振动或转动产生^[12-14],另一种则由 雷达的微动产生^[15]。后者对于传感器安装在机翼 上的阵列 SAR 系统尤为突出。阵列 SAR 的共形天 线阵在载机运动过程中易受空气阻力等因素影响而 发生形变和振动,导致不同位置的天线阵元相位中 心发生偏移。消除阵列 SAR 传感器振动的微多普 勒效应对成像的影响是一个亟待解决的难点,北约 研究和技术组织(RTO)已将共形天线微动的测量 及其补偿作为研究的重要课题^[16]。

通过机械控制或信号处理等方法,可以减小天 线微动的影响。文献[17]将微动因素纳入到信号模 型中,通过成像仿真分析了机翼振动的影响,但未对 多普勒效应做更深入分析。文献[2]采用安装于阵 列 SAR 载机上的激光/CCD 单元记录机翼振动和 形变偏差以补偿阵元位置误差,该方法在阵元数目 较大时实时性和精度不高。本文根据下视阵列 SAR 的特点,结合信号模型和时频分析方法,从信 号分析的角度研究机载毫米波下视阵列 FMCW SAR 成像的微多普勒效应。

1 振动模型的建模

在研究机械振动问题时,可以将机翼的振动简 化为梁振动模型,文献[18]采用这种分析方法对前 视阵列 SAR 天线微动进行了建模与特性分析。

SAR 载机偏离航线时天线相位中心会偏离理 想位置,通常可假设经运动补偿后载机运动状态理 想。以机翼与机身中轴线交点为原点,载机航线向 为 x轴,机翼轴线为 y轴;载机以恒定速度 V沿 x轴 运动,共形天线阵元以间距 $d = \lambda/2$ 沿 y轴线性均 匀分布,单翼长度 l = L/2,机翼总长度为 L. 机翼 截面积为 A(y),弹性模量为 E(y),密度为 $\rho(y)$,截 面关于中性轴的惯性矩为 I(y),y处截面中性轴在 t时刻的位移为 $\tilde{z}(y,t)$,单位长度梁分布的横向外 力和外力矩分别为 f(y,t) 和 m(y,t),取长为 dy的 微段做受力分析,建立振动微分方程

$$\rho(\mathbf{y}) \mathbf{A}(\mathbf{y}) \frac{\partial^2 \widetilde{\mathbf{z}}(\mathbf{y}, t)}{\partial t^2} + \frac{\partial^2}{\partial y^2} \Big[\mathbf{E}(\mathbf{y}) \mathbf{I}(\mathbf{y}) \frac{\partial^2 \widetilde{\mathbf{z}}(\mathbf{y}, t)}{\partial y^2} \Big]$$

$$= f(y,t) - \frac{\partial}{\partial y} m(y,t) \tag{1}$$

假设机翼为等截面的直梁,则 $\rho(y) A(y)$ 和 E(y) I(y) 均为常数, $f(y,t) \equiv 0$, $m(y,t) \equiv 0$,式 (1)化简为

$$\rho A \frac{\partial^2 \widetilde{z}(y,t)}{\partial t^2} + EI \frac{\partial^4 \widetilde{z}(y,t)}{\partial y^4} = 0$$
(2)

该方程为四阶常系数线性齐次偏微分方程,用分离 变量法求解得到固有振动函数:

$$\widetilde{z}(y,t) = \widetilde{Z}(y) \cdot q(t)$$
(3)

式中: Z(y) 为梁截面中性轴在 y 处的固有振型函数, q(t) 是描述运动规律的时间函数, 可表示为

 $q_i(t) = a_i \cdot \sin(2\pi f_i t)$ (4) 式中, a_i 为振幅, $i = 0, 1, 2, \cdots$ 表示振动模式。

根据载机的运动特征,其边界条件为 $\tilde{Z}(0) = 0, \tilde{Z}'(0) = 0, \tilde{Z}''(l) = 0, \tilde{Z}''(l) = 0, 本征频率为$ $f_i = (\lambda_i l)^2 \sqrt{\text{EI}/(\rho A l^4)}/(2\pi),$

$$i = 0, 1, 2, \cdots \tag{5}$$

式中: λ_i 为特征值; $v_e = \sqrt{E/\rho}$ 为弹性纵波沿梁纵向的传播速度。

实验表明:翼端振幅往往超过了发射波半波 长^[2],一般地,特征频率越高,振幅越小,振幅 a_i 与 模式阶数的关系可以近似为 $a_i = a_0 \cdot 2^{-i}$.

由上述分析可以看出,振动效应主要引起了高 度向机翼位置的微小变化,可求得振动函数为

$$\widetilde{z}(y,t) = \sum_{i} \left[\widetilde{A}_{i}(y) \cdot \sin(2\pi f_{i}t) \right]$$
(6)

式中, $\widetilde{A}_i(y) = \widetilde{Z}_i(y) \cdot a_i$. 沿时间积累的振动函数表示为

$$\widetilde{z}(y) = \sum_{t} \widetilde{z}(y, t)$$
$$= \sum_{i} \left[\widetilde{A}_{i}(y) \cdot \sum_{i} \sin(2\pi f_{i}t) \right]$$
(7)

结合上述模型,采用文献[17]中对机翼结构物 理参数的设置,即,传播速度 $v_e \approx 2400 \text{ m/s}$,机翼 总长度为 L = 4 m,平均厚度 $d_w = 4.5 \text{ cm}$,最大振 幅 $a_0 = 0.005 \text{ m}$,求得不同阶次的本征频率为

$$f_{i} = \begin{cases} 4.361 \ 6 \ \text{Hz} & i = 0 \\ 27.333 \ 7 \ \text{Hz} & i = 1 \\ 76.535 \ 6 \ \text{Hz} & i = 2 \\ 149.976 \ 5 \ \text{Hz} & i = 3 \\ 247.924 \ 9 \ \text{Hz} & i = 4 \\ \dots \end{cases}$$
(8)

图 1 给出了阵列中阵元随机翼振动幅度变化的 瞬时位置分布。可以看出,前三阶(*i* = 0,1,2)是 产生阵元位置误差的主要模式,模式越低,振幅越 大,振动频率越低。后文将从时频分析的角度对不 同模式的差异进行说明。

图 1 不同振动模式下阵元的瞬时位置

2 机翼振动条件下的信号建模

在载机运动过程中,机翼的振动使共形天线阵 阵元的位置发生偏移,对阵列合成方向图产生影响。 根据共形天线阵的特点,阵元随机翼振动的几何示 意图^[15-16]如图 2 所示。

图 2 振动几何模型

天线振动时阵元的回波电场矢量 $E_v(r')$ 为

 $\mathbf{E}_{V}(\mathbf{r}') = \exp[\mathbf{j}k\mathbf{r}_{0} \cdot (\mathbf{u}_{k} - \mathbf{u}_{r})] \cdot \mathbf{E}(\mathbf{r})$ (9) 式中: $\mathbf{E}(\mathbf{r})$ 为无扰动的回波电场矢量; $k = 2\pi/\lambda$ 为 波数,λ为入射波波长; \mathbf{u}_{k} 为入射波的单位矢量; \mathbf{u}_{r} 为 回波的单位矢量; $\mathbf{r} = \mathbf{r}' + \mathbf{r}_{0}$, \mathbf{r}_{0} 为振动矢量。

随着载机的运动,机翼振动是时间的函数,振动 矢量可表示为 $r_0 = r_0(t) = r_0(t) \cdot u_0$, u_0 为振动的 单位矢量。可以看出,振动条件下回波电场的差别 体现在相位项,相位差表示为

$$\exp[j\widetilde{\Phi}(t)] = \exp[jkr_0(t) \cdot u_0 \cdot (u_k - u_r)]$$
(10)

对于雷达后向散射,有
$$u_k = -u_r$$
,式(10)表示为

$$\exp[j\tilde{\boldsymbol{\Phi}}(t)] = \exp[j2kr_0(t) \cdot \boldsymbol{u}_0 \cdot \boldsymbol{u}_k]$$
(11)

t 时刻阵列天线的位置为

$$Q(t) = (x(t), y(t), z(y, t))^{\mathrm{T}}$$
(12)

式中:上标 T 表示转置; $z(y,t) = H + \tilde{z}(y,t), H$ 为平台高度, $\tilde{z}(y,t)$ 已由式(6)给出。

下视阵列 SAR 可根据阵列特点采用不同的信 号收发方式,以文献[3]的信号收发模式为理论模 型,在该模式下,误差是由共形天线接收阵元随机翼 振动引起的单程相位差。根据式(11),第 n个接收 阵元因振动引入的相位差为

 $\widetilde{\Phi}(\hat{t}, t_{\rm m}, n) = 2\pi/\lambda \cdot \widetilde{z}(\hat{t}, t_{\rm m}, n)$ (13) 则微多普勒频移为

$$f_{\rm vib}(t) = \frac{1}{2\pi} \frac{\mathrm{d}\Phi(\hat{t}, t_{\rm m}, n)}{\mathrm{d}t}$$
$$= \sum_{i} \left[\frac{2\pi f_{i}}{\lambda} \cdot \widetilde{A}_{i}(y) \cdot \cos(2\pi f_{i}t) \right] (14)$$

阵元位置 y = nd, $n \in [-(N-1)/2, (N-1)/2]$ (设 N 为奇数),第 n个接收阵元接收点目标 (x_0, y_0, z_0)的回波信号表示为

$$s_{\rm r}(\hat{t}, t_{\rm m}, n) = \operatorname{rect}\left(\frac{\hat{t} - \tau}{T_{\rm r}}\right) \cdot \exp[\mathrm{j}\Phi(\hat{t}, t_{\rm m}, n)]$$
(15)

式中:
$$\Phi(\hat{t}, t_{m}, n) = 2\pi \left(f_{0}(\hat{t} - \tau) + \frac{1}{2}K_{r}(\hat{t} - \tau)^{2} \right),$$

 $\tau = (R_{r} + R_{R})/c, R_{r} = \sqrt{(Vt - x_{0})^{2} + y_{0}^{2} + (H - z_{0})^{2}},$
 $R_{R} = \sqrt{(Vt - x_{0})^{2} + (y - y_{0})^{2} + (H - z_{0})^{2}}, t = \hat{t} + mT_{r} = \hat{t} + t_{m}, t_{m}$ 为慢时间变量, \hat{t} 为脉内时间变量,
 K_{r} 为 FMCW 信号的调频率。

忽略信号幅度,机翼振动引起阵元位置变化后 的接收信号可以表示为

$$s_{\rm r}(\hat{t}, t_{\rm m}, n) = \exp[j(\Phi(\hat{t}, t_{\rm m}, n) + \widetilde{\Phi}(\hat{t}, t_{\rm m}, n))]$$
(16)

3 WVD 时频分析方法

从式(16)可以看出, s_r(*ì*, t_m, n) 为频率随时间 变化的时变信号,因此傅里叶方法不再适用。时频 分析方法,如 Cohen 类双线性时频分布成员之一的 Wigner-Ville 分布(WVD),具有较好的时频聚集 性,其基本思想是设计时间和频率的联合函数,用于 同时描述信号在不同时间和频率的能量密度或强 度。信号 s(t) 的自 WVD 定义为

W(t, f) =
$$\int_{-\infty}^{\infty} s(t+t'/2) s^* (t-t'/2) e^{-j2\pi ft'} dt'$$
(17)

由于 WVD 是双线性形式的变换,对于多个信号和的时频分布将存在交叉项。为减轻交叉项的干扰,采用加窗的方法得到伪 WVD(PWVD).对 PWVD 进行平滑操作,得到平滑 PWVD(SPWVD)

SPW(t, f) =
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(v) h(t') s(t - v + t'/2) \cdot s^{*} (t - v - t'/2) e^{-j2\pi f t'} dv dt'$$
 (18)

式中:g(v)和h(t')是两个实、偶窗函数,可以通过 调整两个窗的宽度有效地抑制交叉项。

SPWVD 较小地影响了时频分辨特性并且最大 程度地减小了干扰项的影响,因此适用于微多普勒特 性的分析^[12],修正后的 SPWVD(MSPWVD)表示为

$$MSPW(t, f) = \int_{-\infty}^{\infty} SPW(t', f') \delta[t - \hat{t}(t', f')] \cdot \delta[t - \hat{f}(t', f')] dt' df'$$
(19)

式中: $\hat{t}(t', f')$ 和 $\hat{f}(t', f')$ 分别为重排后的时间和 频点。

4 仿真分析

根据振动模型及信号模型,对目标进行成像仿 真,并基于 WVD 分析方法对下视阵列 SAR 的微多 普勒特性作时频分析。仿真参数如表1所示。

表1 仿真参数

参数	数值	参数	数值
载波频率	37.5 GHz	阵元数	1 001
扫频带宽	500 MHz	阵元间距	0.004 m
扫频频率	1 kHz	平台高度	1 000 m
航线向孔径长度	0.6 m	平台速度	30 m/s

4.1 成像仿真

根据文献[3]的成像算法对点目标进行成像仿 真。其中,点目标坐标列于表2中。

表 2 目标坐标

点目标	航线向 <i>x</i> /m	跨航向 y∕m	高度向 z/m
P_1	0	20	50
P_2	0	30	40
P_3	10	30	50

为了说明机翼振动对三维成像的影响,分别截 取点目标在三种二维平面内的成像结果进行讨论。 无振动理想情况下成像如图 3(a)、(d)、(g)所示,最 大振幅 $a_0 = 0.01$ m 时三个点目标的成像如图 3 (b)、(e)、(h)所示, $a_0 = 0.005$ m 时的成像如图 3 (c)、(f)、(i)所示,可以看出机翼振动对成像影响很 大。

对于 P₁ 和 P₂ 两点,可以从高度向上分辨出 来,机翼振动对高度向目标的分辨率影响很小,但在 高度向上位于同一分辨单元的 P₁ 和 P₃ 点在航线 向上却无法区分,表现为沿航线向的扩展。振动幅 度对成像影响显著,振幅越大,点目标沿航线向成像 扩展越严重。这是由于机翼振动主要引起了雷达与 点目标径向的距离变化,这种距离变化最终对信号 的相位中心产生了调制作用,经合成孔径时间内的 相参积累后,导致沿航线向点目标无法聚焦。

在航线向-跨航向二维平面内,点目标成像结果 出现了二维扩展。同样地,跨航向-高度向二维平面 内,机翼振动对跨航向和高度向成像的影响与上述 分析一致,不作详细说明。

为了进一步说明问题,图 4 给出了无振动误差 以及 $a_0 = 0.01 \text{ m}$ 和 $a_0 = 0.005 \text{ m}$ 条件下 P_1 点成 像结果沿三维方向的剖面图。由图 4(a)和图 4(c) 可见,机翼振动对航线向和跨航向的聚焦成像影响 严重,随着振幅的增大,成像剖面图中主瓣展宽,能 量降低,旁瓣严重升高。但这种振动效应对高度向 的聚焦影响很小,从图 3 和图 4(b)可以看到高度向 分辨率几乎不受影响。

通过分析可知,机翼振动对三维成像影响的差 别很大,这是因为在三维方向上分别通过不同的技 术获得分辨率。下视阵列 SAR 航线向分辨率通过 慢时间积累实现聚焦,跨航向分辨率通过数字波束 形成的空间采样技术实现,高度向分辨率通过大带 宽信号实现。因此,航线向和跨航向相当于时间和 空间信号的积累过程,这种积累效应会导致该二维 方向的误差积累而影响成像,但对高度向成像的影 响却非常小。

4.2 时频分析

虽然可以直观地从成像结果看出机翼振动的影 响,但无法得到振动模式与成像关系的更多信息^[11]。 本节结合 MSPWVD 对微多普勒效应进行分析。

图 5 点目标回波信号的 WVD

选择 P₁ 点回波信号,对其进行航线向压缩后 的多普勒谱仿真,如图 5 所示,多普勒频率的变化与 航线向时间为线性关系,符合目标的多普勒分布特 征。 为了使时频分布与成像仿真结果具有可比性,同样选择对振幅 $a_0 = 0.01 \text{ m} \pi a_0 = 0.005 \text{ m}$ 进行时频分析仿真来比较不同模式下频率和振幅的影响。

振动幅度与阶数呈指数衰减,前三阶(模式 *i*, *i*=0,1,2)是产生阵元位置误差的主要模式,因此, 给出前三阶模式的仿真结果,如图 6 所示,其中, 图 6(a)、(b)、(c)为 $a_0 = 0.01$ m 的仿真结果,图 6(d)、(e)、(f)为 $a_0 = 0.005$ m 的仿真结果。

由 WVD 仿真图可以看出,尽管振幅很小,仅为 厘米甚至毫米量级,但对 SAR 回波信号的调制却非 常显著。多普勒频率不是理想的随时间线性变化的 关系,而是在图 5 的基础上,与航线向时间(合成孔 径时间)近似呈余弦调制关系,因此目标沿航线向成 像不能聚焦,而是出现了扩展,可见通过 WVD 可以 很好地解释机翼振动对成像的影响。

特别地,为了满足阵列 SAR 小型化的需要,参数设置中下视阵列 SAR 为 FMCW 信号,且工作在

毫米波段,这样易于实现阵列 SAR 高紧凑的天线模块,由于其发射的电磁波长与振动幅度非常接近,因

此在 WVD 仿真图中,多普勒频率随时间变化的调制结果非常显著。

图 6 不同振幅、不同模式,微多普勒效应的 WVD

根据上述仿真和理论分析的结果,对信号的微 多普勒特征进行参数提取和特征分析。根据图 6 的 仿真结果并结合式(6)、式(13)和式(14)对几种振动 模式的幅度和频率进行估计。从图 6(a)和(d)可以 估计得到模式 0 的振动周期估计值 $T_{0e} =$ 0.229 5 s,根据时间与频率的关系得到该模式下的 振动频率估计值 $f_{0e} = 4.357$ 3 Hz,振幅估计值 a_{0e} = 0.009 38 m.同样地,可以求得其他阶次的结果, 并将估算值与理论分析值列于表 3 中(频率精度至 0.000 1 Hz,幅度精度至 0.000 01 m,表中仅给出 a_0 = 0.01 m时的一组估计值),其中, f_{ie} 和 a_{ie} 分别为 模式 i的频率和幅度估计值, f_i 和 a_i 分别为模式 i的理论计算值。

通过仿真和估计结果可以看出:采用时频分析方 法可以精确地估算出不同模式下的振动频率和幅度, 与式(8)的理论结果相比,估计精度可达到≪10⁻².

表 3	微多普勒参数
-----	--------

模式 i	0	1	2	3	4
$f_i/{ m Hz}$	4.361 6	27.3337	76.535 6	149.976 5	247.924 9
$f_{i\mathrm{e}}/\mathrm{Hz}$	4.357 3	27.472 5	76.335 9	149.253 7	250.000 0
a_i/m	0.010 00	0.005 00	0.002 50	0.001 25	0.000 63
a_{ie}/m	0.009 38	0.005 41	0.002 69	0.001 14	0.000 57

5 结 论

下视阵列 SAR 采用了阵列技术,可以实现三维 成像,但机翼共形天线的振动会对成像产生很大影 响。本文基于振动模型和微多普勒模型对下视阵列 SAR 成像的微多普勒效应进行了研究,分析了微多 普勒效应对下视三维成像的影响。结果表明,基于 时频分析估计微多普勒参数的方法可以准确估计下 视阵列 SAR 天线振动误差,有效弥补采用仪器测量 误差的不足,为下视阵列 SAR 实现精确三维成像以 及基于信号的天线误差补偿的研究提供思路。

参考文献

- [1] SCHIPPERS H, HVAN T J, KNOTT P, et al. Vibrating antennas and compensation techniques research in NATO/RTO/SET 087/RTG 50[C]//IEEE Aerospace Conference. Big Sky, March 3-10, 2007: 1-12.
- [2] WEIB M, OLAF P, ENDER J. First flight trials with ARTINO[C]// European Conference on Synthetic Aperture Radar. Friedrichshafen, June 2-5, 2008: 187-190.
- [3] HOU Haiping, QU Changwen, ZHOU Qiang, et al. A downward-looking three-dimensional imaging method for airborne FMCW SAR based on array antennas
 [J]. Chinese Journal of Aeronautics, 2011, 24(1);

55-64.

- [4] WEIB M. Initial ARTINO radar experiments [C]// European Conference on Synthetic Aperture Radar. Aachen, June 7-10, 2010: 857-860.
- [5] WANG W Q, PENG Q C, CAI J Y. Waveform-diversity-based millimeter-wave UAV SAR remote sensing
 [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 691-700.
- [6] 刘贵喜,凌文杰,杨万海.线性调频连续波雷达多目 标分辨的新方法[J].电波科学学报,2006,21(1): 79-83.

LIU Guixi, LING Wenjie, YANG Wanhai. Novel method to multitarget resolution for linear frequencymodulated continues wave radar[J]. Chinese Journal of Radio Science, 2006, 21(1): 79-83. (in Chinese)

[7] 朱小鹏,张 群,罗 迎,等. 基于调频连续波的双基
 逆合成孔径雷达研究[J]. 电波科学学报,2011,26
 (4):771-776.

ZHU Xiaopeng, ZHANG Qun, LUO Ying, et al. ISAR imaging analysis of bi-static FMCW radar[J]. Chinese Journal of Radio Science, 2011, 26(4): 771-776. (in Chinese)

[8] 侯海平,曲长文,杨 俭,等.改进的机载阵列调频 连续波合成孔径雷达前视成像方法[J].电波科学学 报,2011,26(5):944-950.

HOU Haiping, Qu Changwen, YANG Jian, et al. Improved forward-looking imaging method for airborne array FMCW SAR[J]. Chinese Journal of Radio Science, 2011(5): 944-950. (in Chinese)

- [9] EDRICH M. Ultra-lightweight synthetic aperture radar based on a 35 GHz FMCW sensor concept and online raw data transmission[J]. IEE Proc-Radar Sonar Navig, 2006, 153(2): 129-134.
- [10] 陈行勇,刘永祥,黎 湘,等. 微多普勒分析和参数 估计[J]. 红外与毫米波学报,2006,25(5):360-363.

CHEN Hangyong, LIU Yongxiang, LI Xiang, et al. Analysis of micro-Doppler and parameters estimation [J]. Journal of Infrared Millim Waves, 2006, 25(5): 360-363. (in Chinese)

- [11] 罗迎,张群,柏又青,等.线性调频步进信号雷达微多普勒效应分析及目标特征提取[J].电子学报,2009,37(12):2741-2746.
 LUO Ying, ZHANG Qun, BAI Youqing, et al. Analysis of micro-Doppler effect and feature extraction of target in frequency-stepped chirp signal radar[J]. Acta Electronica Sinica, 2009, 37(12): 2741-2746. (in Chinese)
- [12] CHEN V C, LI F, HO S-S, et al. Analysis of micro-Doppler signatures[J]. IEE Proc-Radar Sonar Navig, 2003, 150(4): 271-276.
- [13] SPARR T, KRANE B. Micro-Doppler analysis of vibrating targets in SAR[J]. IEE Proc-Radar Sonar

Navig, 2003, 150(4): 277-283.

- [14] RÜEGG M, MEIER E, N? ESCH D. Vibration and rotation in millimeter-wave SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (2): 293-304.
- [15] CHEN V C, LI F, HO S-S, et al. Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2-21.
- [16] KNOTT P. Deformation and vibration of conformal antenna arrays and compensation techniques [C]// Meeting Proceedings in Multifunctional Structures/ Integration of Sensors and Antennas, 2006; 1-12.
- [17] KLARE J, CERUTTI-MAORI D, BRENNER A, et al. Image quality analysis of the vibrating sparse MI-MO antenna array of the airborne 3D imaging radar ARTINO[C]// IGARSS. Barcelona, July 23-28, 2007: 5310-5314.
- [18] 侯海平,曲长文,丁 灿,等. 阵列天线微动对前视 SAR 成像影响及补偿研究[J]. 电子与信息学报, 2011,33(4):831-837.

HOU Haiping, QU Changwen, DING Can, et al. Influence of array antenna micro-motion on forwardlooking SAR imaging and compensation study [J]. Journal of Electronics & Information Technology, 2011, 33(4): 831-837. (in Chinese)

作者简介

杨 俭 (1982-),男,江西 人,工程师,海军航空工程学院博士 生,主要研究方向为高分辨率雷达 信息处理和微波遥感。

侯海平 (1981—),男,山东 人,博士,工程师,主要研究方向为 高分辨雷达信息处理和微波遥感。

曲长文 (1963-),男,山东 人,海军航空工程学院教授,博士生 导师,主要研究领域为雷达信号处 理、电子对抗、阵列信号处理及数据 融合等。