The miniaturized design of time module based on 2-bit structure
-
摘要: 针对时间调制阵列中调制模块的小型化问题,采用多层板结构,将模块中开关的谐振单元和偏置电路以及射频信号电路放置在不同层,并通过类同轴耦合线和缺陷地等不同的技术措施结合,解决不同射频通道之间的幅相不平衡以及谐振等问题,在实现小型化的同时兼顾了电性能. 据此设计了2比特结构的时间调制模块,该模块工作频段为14.2~16.4 GHz,尺寸为1.2λ×0.96λ@15.3 GHz,相邻状态相移为90±5°,幅度差±0.5 dB. 在载波频率为15.3 GHz、调制频率为1 MHz时可达到34 dB谐波抑制,最大信号带宽则可达200 MHz,验证了本文设计方法的有效性.Abstract: Aiming at the miniaturization of the module in the time-modulated array, the multi-layer structure is adopted. Different parts such as the resonant unit, the bias circuit of the switch and the RF signal circuit are placed on different layers in the module. By using several structures such as coaxial-like coupling line and defective ground, the imbalance problems of amplitude and phase between different branches and resonance phenomena in the module are improved. A time-modulated module with a miniaturized 2-bit structure is designed, which is operating between 14.2 and 16.4 GHz and the size is 1.2λ×0.96λ at15.3GHz with a phase shift within 90±5° and an amplitude difference within ±0.5 dB between adjacent state. The module has achieved the harmonic suppression of 34 dB at modulation frequency of 1 MHz and the maximum signal bandwidth of 200 MHz. Thus a 2-bit time-modulated module is miniaturized with good performances.
-
表 1 关键参数取值
Tab. 1 Values of key parameters mm
参数 取值 参数 取值 参数 取值 L1 2.8 L11 2.4 W8 0.3 L2 2.48 L12 2.6 W9 0.2 L3 2.7 Wm 0.52 W10 0.1 L4 2.6 W1 0.2 W11 1 L5 1.4 W2 0.2 W12 1.2 L6 2.7 W3 0.1 R1 0.15 L7 1.5 W4 0.8 R2 2.7 L8 2.27 W5 1.2 G1 0.1 L9 2.7 W6 0.1 G2 0.13 L10 2.45 W7 0.46 表 2 不同调制模块的性能比较
Tab. 2 Performance comparison of different modules
-
[1] ROCCA P, POLI L, OLIVERI G, et al. Synthesis of sub-arrayed time modulated linear arrays through a multi-stage approach[J]. IEEE transactions on antennas and propagation,2011,59(9):3246-3254. DOI: 10.1109/TAP.2011.2161535 [2] TONG Y, TENNANT A. Reduced sideband levels in time-modulated arrays using half-power sub-arraying techniques[J]. IEEE transactions on antennas and propagation,2011,59(1):301-303. DOI: 10.1109/TAP.2010.2090484 [3] ZHU Q, YANG S, YAO R, et al. Gain improvement in time-modulated linear arrays using SPDT switches[J]. IEEE antennas and wireless propagation letters,2012,11:994-997. DOI: 10.1109/LAWP.2012.2213292 [4] JING Y, LI W, SHI X. Phase modulation technique for four-dimensional arrays[J]. IEEE antennas and wireless propagation letters,2014,13:1393-1396. DOI: 10.1109/LAWP.2014.2339894 [5] YAO A M, WU W, FANG D G. Single-sideband time-modulated phased array[J]. IEEE transactions on antennas and propagation,2015,63(5):1957-1968. DOI: 10.1109/TAP.2015.2406890 [6] HE C, LIANG X, BAI X, et al. Time-Domain antenna arrays for future phased array applications[C]// IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015: 814-815. [7] YAO A M, WU W, FANG D G. Study on reconfigurable coaperture antenna arrays based on time-modulation and retrodirective techniques[J]. IEEE transactions on antennas and propagation,2016,64(5):1713-1724. DOI: 10.1109/TAP.2016.2540660 [8] CHEN Q, ZHANG J D, WU W, et al. Enhanced single-sideband time-modulated phased array with lower sideband level and loss[J]. IEEE transactions on antennas and propagation,2019,68(1):275-286. [9] CHEN Q Y, ZHANG J D, WU W, et al. Single-sideband time-modulated phased array with S-step waveform[J]. IEEE antennas and wireless propagation letters,2020,19(11):1867-1871. DOI: 10.1109/LAWP.2020.2989477 [10] NI G, HE C, CHEN J, et al. Low Sideband radiation beam scanning at carrier frequency for time-modulated array by non-uniform period modulation[J]. IEEE transactions on antennas and propagation,2020,68(5):3695-3704. DOI: 10.1109/TAP.2020.2969889 [11] LI H, CHEN Y, YANG S. Design and analysis of an amplitude-phase weighting module for harmonic beamforming in time-modulated antenna arrays[J]. AEU-international journal of electronics and communications,2021,138:153835. DOI: 10.1016/j.aeue.2021.153835 [12] FISHER R E. Broadbanding microwave diode switches (correspondence)[J]. IEEE transactions on microwave theory and techniques,1965,13(5):706-706. [13] SUNG G J. Broadband 90° phase shifter using two short stubs[C]// IEEE Radio and Wireless Symposium (RWS), 2010: 464-467. [14] YOON H J, MIN B W. Wideband 180° phase shifter using parallel-coupled three-line[J]. IEEE microwave and wireless components letters,2019,29(2):89-91. DOI: 10.1109/LMWC.2018.2886469 [15] FAN H, WANG W, LIANG X, et al. A method of accurate co-simulation by considering lumped port setting in EM simulator[C]// IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), 2015: 108-112. [16] 罗玉川, 向磊, 高彦昌, 等. 时间调制阵列天线的非理想波形调制研究[J]. 电波科学学报,2021,36:1-7. DOI: 10.12265/j.cjors.2019200LUO Y C, XIANG L, GAO Y C, et al. Research on non-ideal waveform modulation of time modulation array antenna[J]. Chinese journal of radio science,2021,36:1-7. (in Chinese) DOI: 10.12265/j.cjors.2019200 -