郑翰,刘默然,周晨. 等离子体中的涡旋电磁波传播研究[J]. 电波科学学报,2022,37(6):1039-1049. DOI: 10.12265/j.cjors.2021310
      引用本文: 郑翰,刘默然,周晨. 等离子体中的涡旋电磁波传播研究[J]. 电波科学学报,2022,37(6):1039-1049. DOI: 10.12265/j.cjors.2021310
      ZHENG H, LIU M R, ZHOU C. The propagation of vortex electromagnetic waves in plasma[J]. Chinese journal of radio science,2022,37(6):1039-1049. (in Chinese). DOI: 10.12265/j.cjors.2021310
      Citation: ZHENG H, LIU M R, ZHOU C. The propagation of vortex electromagnetic waves in plasma[J]. Chinese journal of radio science,2022,37(6):1039-1049. (in Chinese). DOI: 10.12265/j.cjors.2021310

      等离子体中的涡旋电磁波传播研究

      The propagation of vortex electromagnetic waves in plasma

      • 摘要: 目前对涡旋电磁波的产生方法及应用已经有很多理论及实验上的研究,但对于其传播过程的研究还非常缺乏,尤其是在电离层等离子体中的传播过程的研究. 本文建立了柱坐标系下的时域有限差分方法模型,推导了柱坐标系下的边界吸收方法,在此基础上计算了涡旋电磁波在真空及等离子体中的传播过程,同时模拟了等离子体密度在涡旋电磁波作用下的时空演化过程. 模拟结果表明:通过阵列天线模型产生的涡旋电磁波在真空中传播时涡旋的形状不会改变;在等离子体介质中,涡旋波的传播依然遵循线性理论,当涡旋电磁波遇到截止频率的等离子体时也会有明显的反射,并产生驻波;同时,在等离子体中涡旋波依然可以保持涡旋形态;涡旋波对等离子体的线性作用使得等离子体也呈现出涡旋态,与实验中的观测相符. 以上的模拟结果能为涡旋电磁波加热电离层的实验以及未来在短波通信方面的应用提供理论支持. 本文建立的涡旋波在等离子体中的传播模型也为进一步研究涡旋波与等离子体的非线性相互作用打下了基础.

         

        Abstract: At present, there have been many theoretical and experimental researches on the generation methods and applications of vortex electromagnetic waves, but the research on its propagation process is still very lacking, especially the research on the propagation process in ionospheric plasma. In this paper, a finite-difference time-domain method model in a cylindrical coordinate system is established, and the boundary absorption method in a cylindrical coordinate system is deduced. On this basis, the propagation process of vortex electromagnetic waves in vacuum and plasma is calculated, and the space-time evolution process of plasma density under the action of vortex electromagnetic waves is simulated. The simulation results show that the shape of the vortex will not change when the vortex electromagnetic wave generated by the array antenna model propagates in a vacuum. In the plasma medium, the propagation of vortex waves still follows the linear theory, and when vortex waves encounter the plasma of the cut-off frequency, there will be obvious reflections and a standing wave will be generated. At the same time, the vortex wave in the plasma can still maintain the vortex shape; the linear effect of the vortex wave on the plasma makes the plasma also present a vortex state, which is consistent with the observations in the experiment. The above simulation results can provide theoretical support for the experiments of vortex electromagnetic waves heating the ionosphere and applications in shortwave communications in the future. The propagation model of vortex waves in plasma established in this paper also lays the foundation for further research on the nonlinear interaction between vortex waves and plasma.

         

      /

      返回文章
      返回