Design of anti-interference rectangular waveguide slot array antenna based on T-shaped resonators
-
摘要: 介绍了一种抗干扰矩形波导缝隙阵列天线的设计方法. 通过在矩形波导下壁引入周期性的T型谐振器,有效提升了天线的抗干扰能力. 仿真、设计并加工了一款基于T型谐振器的四缝隙矩形波导缝隙阵列天线. 测试结果表明,该天线的−10 dB阻抗带宽为10.3%(5.5~6.1 GHz),增益为11.5~12.8 dBi,口径效率为72.1%~87.3%。与传统矩形波导缝隙阵列天线相比较,本文设计天线在抑制频段 7.9~9.6 GHz的抗干扰能力提升了32.2~69.3 dB,适用于多频段、多任务的无线通信、雷达系统等.Abstract: An anti-interference rectangular waveguide slot array antenna is presented in this paper. The antenna’s anti-interference performance is improved by periodically loading a row of T-shaped resonators at the bottom broad wall of the rectangular waveguide. A T-shaped resonator-based four-slot rectangular waveguide slot array antenna is simulated, designed and fabricated. The measured results show that the antenna's impedance bandwidth is 10.3% (5.5-6.1 GHz) with a realized gain of 11.5-12.8 dBi and an aperture efficiency of 72.1%-87.3%. Compared with a traditional rectangular waveguide slot array antenna, the proposed antenna’s anti-interference ability is improved by 32.2-69.3 dB in the suppression band of 7.9-9.6 GHz, so it is suitable for multi-band and multi-task wireless communication and radar systems.
-
表 1 抗干扰天线与参考天线参数取值
Tab. 1 Dimensions of the anti-interference and reference antennas mm
天线 a b lS wS d λg t1 抗干扰天线 28.5 12.6 26.3 2.4 3.0 72.6 1.5 参考天线 37.1 19.0 25.4 3.8 7.0 72.6 1.5 表 2 抗干扰波导缝隙阵列天线性能对比
Tab. 2 Comparison with other anti-interference antennas
文献 滤波集
成位置材质 阵元
数目−10 dB阻抗
带宽剖面
高度口径尺寸
(λ02)①抑制频带带宽 抑制水平/dB 效率 [10] 馈电波导 金属 16 9.6% 0.51λ0 / 14.9% ≥30.0 87.5% [12] 馈电波导 金属 256 2.3%、2.2%② 0.95λ0 17.65×17.65 / ≥50.0 60.0% [13] 辐射波导 介质、金属 6 5.6% 0.33λ0 0.67×4.90 8.9% 40.1~62.5 68.9% [14] 辐射波导 金属 4 7.3% 0.28λ0 0.70×3.30 10.8% 41.0~61.5 57.4% [15] 辐射波导 金属 8 4.0% 0.40λ0 0.79×4.59 3.5% 26.6~38.0 83.6% 本文 辐射波导 金属 4 10.3% 0.24λ0 0.55×3.16 19.4% 56.4~80.5 87.3% 注:①λ0是天线中心频率对应的自由空间波长;②双工器的两个工作频带. -
[1] ODA S, SAKAGUCHI S, KANAYA H, et al. Electrically small superconducting antennas with bandpass filters[J]. IEEE transactions on applied superconductivity,2007,17(2):878-881. DOI: 10.1109/TASC.2007.898273 [2] YANG N, CALOZ C, KU K. Co-designed CPS UWB filter-antenna system[C]// IEEE Antennas and Propagation Society International Symposium. Honolulu, 2007: 1433-1436. [3] WU C H, WANG C H, CHEN S Y, et al. Balanced-to-unbalanced bandpass filters and the antenna application[J]. IEEE transactions on microwave theory and techniques,2008,56(11):2474-2482. DOI: 10.1109/TMTT.2008.2005888 [4] 李绪平, 张盛华, 杨亚兵, 等. 3毫米波段缝隙阵天线的热电一体化设计研究[J]. 电波科学学报,2014,29(2):276-281.LI X P, ZHANG S H, YANG Y B, et al. Thermal-electronic integration design of 3 mm wave-band waveguide-slot array antenna[J]. Chinese journal of radio science,2014,29(2):276-281. (in Chinese) [5] 张娜曼, 杨峰, 杨鹏. 低剖面双频双圆极化平板缝隙天线的设计[J]. 电波科学学报,2015,30(4):693-698.ZHANG N M, YANG F, YANG P. Design of a novel low-profile dual-band and dual circularly polarized planar slot antenna[J]. Chinese journal of radio science,2015,30(4):693-698. (in Chinese) [6] 任宇辉, 高宝建, 伍捍东, 等. 基于单脊波导的缝隙阵列天线研究[J]. 电波科学学报,2014,29(2):391-396.REN Y H, GAO B J, WU H D, et al. Single ridge waveguide-based slot array[J]. Chinese journal of radio science,2014,29(2):391-396. (in Chinese) [7] 何恺, 吕英华, 张金玲. 基于频率选择面低雷达散射截面的波导天线设计[J]. 电波科学学报,2016,31(2):243-246.HE K, LV Y H, ZHANG J L. The design of waveguide antenna with low radar cross section based on frequency selective surface[J]. Chinese journal of radio science,2016,31(2):243-246. (in Chinese) [8] 冯雪健, 杨利霞, 丁元赫, 等. 一种四频段多L型缝隙天线研究与设计[J]. 电波科学学报,2016,31(2):382-386.FENG X J, YANG L X, DING Y H, et al. Design and implementation of a four-band microstrip antenna[J]. Chinese journal of radio science,2016,31(2):382-386. (in Chinese) [9] WU X, YANG F, XU F, et al. Circularly polarized waveguide antenna with dual pairs of radiation slots at Ka-band[J]. IEEE antennas and wireless propagation letters,2017,16:2947-2950. DOI: 10.1109/LAWP.2017.2755022 [10] LU J, ZHANG H, WANG W, et al. Broadband dual polarized waveguide slot filtenna array with low cross polarization and high efficiency[J]. IEEE transactions on antennas and propagation,2019,67(1):151-159. DOI: 10.1109/TAP.2018.2876174 [11] 余晨, 洪伟, 周健义. 基片集成波导全向滤波天线多天线阵列[J]. 电波科学学报,2012,27(2):301-306.YU C, HONG W, ZHOU J Y. Substrate integrated omnidirectional filtenna MIMO array[J]. Chinese journal of radio science,2012,27(2):301-306. (in Chinese) [12] A. VOSOOGH, M. S. SORKHERIZI, A. U. ZAMAN, et al. An integrated Ka-band diplexer-antenna array module based on gap waveguide technology with simple mechanical assembly and no electrical contact requirements[J]. IEEE transactions on microwave theory and techniques,2018,66(2):962-972. DOI: 10.1109/TMTT.2017.2757469 [13] ZHENG Z, FANG X, WANG W, et al. A compact waveguide slot filtering antenna based on mushroom-type surface[J]. IEEE antennas and wireless propagation letters,2020,19(10):1823-1827. DOI: 10.1109/LAWP.2020.3020539 [14] 郑治, 汪伟, 张洪涛, 等. 一种基于电磁超材料的抗干扰天线[J]. 电波科学学报,2020,35(2):299-304.ZHENG Z, WANG W, ZHANG H T, et al. An anti-jamming antenna utilizing electromagnetic metamaterials[J]. Chinese journal of radio science,2020,35(2):299-304. (in Chinese) [15] YUAN W, LIANG X, ZHANG L, et al. Rectangular grating waveguide slot array antenna for SATCOM applications[J]. IEEE transactions on antennas and propagation,2019,67(6):3869-3880. DOI: 10.1109/TAP.2019.2905784 [16] ELLIOTT R, KURTZ L. The design of small slot arrays[J]. IEEE transactions on antennas and propagation,1978,26(2):214-219. DOI: 10.1109/TAP.1978.1141814 [17] KRAUS J D, MARHEFKA R J. Antennas: for all applications[M]. 2nd ed. New York: McGraw-Hill, 1988: 573-575. -