周子恒,李越. 基于近零指数超材料的频分复用信息传输[J]. 电波科学学报,2021,36(6):905-911. DOI: 10.12265/j.cjors.2021146
      引用本文: 周子恒,李越. 基于近零指数超材料的频分复用信息传输[J]. 电波科学学报,2021,36(6):905-911. DOI: 10.12265/j.cjors.2021146
      ZHOU Z H, LI Y. Frequency-division-multiplexing information transmission based on index-near-zero metamaterials[J]. Chinese journal of radio science,2021,36(6):905-911. (in Chinese). DOI: 10.12265/j.cjors.2021146
      Citation: ZHOU Z H, LI Y. Frequency-division-multiplexing information transmission based on index-near-zero metamaterials[J]. Chinese journal of radio science,2021,36(6):905-911. (in Chinese). DOI: 10.12265/j.cjors.2021146

      基于近零指数超材料的频分复用信息传输

      Frequency-division-multiplexing information transmission based on index-near-zero metamaterials

      • 摘要: 面向高速传输信息的需求,基于近零指数超材料概念提出了一种全新的频分复用实现架构. 所采用的近零指数超材料由一块近零介电常数背景和任意排列的光学掺杂异质体构成. 解析理论表明,光学掺杂异质体可以灵活调控近零指数超材料整体的等效磁导率以及传输响应,所以在其周围环绕金属屏蔽环并加载开关,即可实现对多频带传输幅度的独立调制. 数值仿真和理论计算结果表明,当加入N个光学掺杂异质体,即可形成N路信息传输通道,有效提升信道容量. 基于近零指数超材料的频分复用实现架构具有部署灵活、易于调节等优势,且近零介电常数响应可以在微波、太赫兹乃至光学波段被实现或模拟,因而所提出信息传输架构可以在广阔的频段具有良好的应用前景.

         

        Abstract: To meet the demand of high-speed transmission of information, this paper proposes a new implementation architecture of the frequency division multiplex (FDM) based on the concept of index-near-zero (INZ) metamaterials. In our design, the INZ metamaterial is constituted by an epsilon-near-zero (ENZ) background containing arbitrarily-located photonic dopants. The analytical theory framework demonstrates that photonic dopants are capable of flexibly controlling the effective permeability as well as the transmission response of the INZ metamaterial. Furthermore, by surrounding the photonic dopants with metallic cloaking where switches are mounted, independent amplitude modulation of multiple frequency bands can be achieved. The numerical simulation and theoretical calculation indicate that, by introducing N photonic dopants, we can realize N channels for information transmission, which efficiently increase the channel capacity. The proposed FDM implementation architecture based on the INZ metamaterial features the unique advantages of easy deployment and tuning. As the ENZ response can be realized or emulated in microwave, terahertz and even optical regions, the proposed architecture for information transmission can find promising applications in a wide range of frequency.

         

      /

      返回文章
      返回