Electrical characteristics of the new dual radiator antenna in Ku band
-
摘要: 为满足水下航行器在复杂海况中接收来自海面高速数据对天线的需求,文中提出了一种Ku波段双辐射体天线的设计方案. 首先在半波振子天线的正交方向添加寄生辐射体,在限定天线线径比的情况下利用寄生辐射体改善天线在复杂海况中的全向性,通过计算天线的寄生辐射体之间的间距衔接天线不同辐射体之间的电流分布;然后对天线振子上的电流分布进行近似推导,得到新型双辐射体天线的具体结构参数;最后通过电磁仿真计算,得出天线的电气特性,并进行实物测量和对比. 仿真和测量结果表明,新型双辐射体天线在复杂海况造成的全部运动姿态中,水下反射系数小于0.45,水下增益高于−40 dBi,在所处水平面之上呈现全向性,实测结果与仿真结果具有较好的一致性. 该天线具有线径比大、全向、水下增益较高的特点,性能受不同运动姿态的影响较小,为水下航行器的高频拖曳天线提供了一种新颖的天线结构.Abstract: To meet the demand of antenna for underwater vehicle receiving high-speed data from sea surface in complex sea conditions, a design scheme of Ku band dual radiator antenna is proposed. The parasitic radiator is added in the orthogonal direction of the half-wave dipole antenna. Under the condition of limited antenna wire-to-diameter ratio, the parasitic radiator is used to improve the omni-directional performance of the antenna in complex sea conditions. By adjusting the spacing between the parasitic radiators of the antenna, the current distribution between different radiators of the antenna is connected. Through the approximate derivation of the current distribution on the oscillator, the specific structural parameters of the new dual radiator antenna are obtained, and the electrical characteristics of the new dual radiator antenna, such as the far field and direction pattern, are obtained. Through the electromagnetic simulation calculation, the electrical characteristics of the antenna are verified, and the actual measurement and comparison are made. The simulation and measurement results show that the underwater reflection coefficient of the new dual radiator antenna is less than 0.45 and the underwater gain is higher than −40 dBi in complex sea conditions, showing omni-directional above the horizontal plane. The measured results are in good agreement with the simulation results. The antenna has the characteristics of large wire-diameter ratio, omnidirectional and high underwater gain, which provides a novel antenna structure for the high frequency trailing antenna of underwater vehicle.
-
Key words:
- underwater communication /
- Ku-band /
- dual radiator /
- trailing antenna /
- complex sea condition
-
表 1 部分盐水浓度与对应电导率的关系
Tab. 1 The relationship between the concentration of partial brine and the corresponding conductivity
盐水浓度/% 电导率/(S·m−1) 0.21 0.4 0.43 0.8 1.15 2.0 2.38 4.0 表 2 原型天线和缩比模型间对应关键参数的缩比关系
Tab. 2 Scaling relationships of the key parameters between prototype antenna, environment and scale model
物理量 原型天线 缩比模型 长度 l l'=l/k 相对介电常数 ε ε'=ε 电导率 σ σ'=kσ 频率 f f'=kf 波长 λ λ'=λ/k 增益 G G'=G 表 3 缩比模型测试平台中天线全向性测试结果
Tab. 3 Antenna omnidirectional test results in the scale model test platform
dBmv 水平 A B 竖直 A B 1 5.8 4.7 1 1.2 0.6 2 5.9 5.1 2 1.3 0.7 3 6.0 5.4 3 1.7 0.7 4 5.8 5.0 4 1.4 0.5 5 5.5 5.1 5 0.9 0.4 6 6.0 5.2 6 1.4 0.9 7 6.0 5.3 7 1.9 0.5 8 5.8 5.3 8 1.5 0.3 9 6.3 5.8 9 2.1 0.8 10 7.2 6.1 10 3.6 −2.6 11 6.1 5.9 11 2.8 0.3 -
[1] 杨坤, 杜度. 国外对潜通信技术发展研究[J]. 舰船科学技术,2018,40(3):153-157.YANG K, DU D. Research on the development of foreign submarine communication technology[J]. Ship science and technology,2018,40(3):153-157. (in Chinese) [2] 庆兴发, 刘金修. Ka+Ku双频卫星通信系统在通航直升机上的应用研究[J]. 中国新通信,2019,21(20):23.QING X F, LIU J X. Application research of Ka+Ku dual-frequency satellite communication system in navigation helicopter[J]. China new telecommunications,2019,21(20):23. (in Chinese) [3] 史芃. 超高频偶极子天线设计方法研究[D]. 上海: 上海交通大学, 2011.SHI P. UHF dipole RFID tag antenna design method research[D]. Shanghai: Shanghai Jiao Tong University, 2011. (in Chinese) [4] WANG S Y. Design of a new UHF receiving antenna for underwater vehicle[C]//The 20th IEEE International Conference on Communication Technology, Nanning, 2020. [5] 靳贵平, 黎淼兰, 陆杜娇, 等. 差分馈电双极化四波束方向图可重构天线[J]. 电波科学学报,2021,36(2):187-194. DOI: 10.13443/j.cjors.2020032001JIN G P, LI M L, LU D J, et al. Differentially-fed dual-polarization four beam pattern reconfigurable antenna[J]. Chinese journal of radio science,2021,36(2):187-194. (in Chinese) DOI: 10.13443/j.cjors.2020032001 [6] 李棉全, 李永祯, 董健, 等. 正交偶极子的极化特性分析[J]. 电波科学学报,2012,27(2):396-401+424.LI M Q, LI Y Z, DONG J, et al. Polarization characteristics analysis of crossed dipoles[J]. Chinese journal of radio science,2012,27(2):396-401+424. (in Chinese) [7] SIEGEL M, KING R. Electromagnetic propagation between antennas submerged in the ocean[J]. IEEE transactions on antennas and propagation,2003,21(4):507-513. [8] 焦瑜呈. 海水中电磁波特性的分析与研究[J]. 舰船电子工程,2018,38(8):176-179. DOI: 10.3969/j.issn.1672-9730.2018.08.040JIAO Y C. Analysis and research of electromagnetic properties of seawater[J]. Naval electronic engineering,2018,38(8):176-179. (in Chinese) DOI: 10.3969/j.issn.1672-9730.2018.08.040 [9] 赵越, 彭怀云, 李清亮. 部分浸没于海水中天线阻抗及辐射效率分析[J]. 电波科学学报, 2021, 36(4): 518-523.ZHAO Y, PENG H Y, LI Q L. Impedance characteristics and radiation efficiency of partially submerged antenna in seawater[J]. Chinese journal of radio science, 2021, 36(4): 518-523.(in Chinese) [10] 洪伟年. 泡沫塑料的相对介电常数[J]. 光纤与电缆及其应用技术,1986(4):50-55.HONG W N. The relative permittivity of foam plastics[J]. Optical fiber and application technology,1986(4):50-55. (in Chinese) [11] WANG S Y. Analysis of antenna performance in complex sea conditions based on ergodic algorithm[C]//Cross Strait Radio & Wireless Technology Conference. Fuzhou, 2020. [12] 王宏磊. 电磁波跨越海—空界面传播特性研究[D]. 西安: 西北工业大学, 2015.WANG H L. Study on Electromagnetic wave propagation across seawater to air interface[D]. Xi’an: Northwest University of Technology, 2015. (in Chinese) [13] WANG S Y. Application analysis of similarity principle in the design of the underwater receiving antenna[J]. Progress in electromagnetics research M,2020,95:189-197. DOI: 10.2528/PIERM20052602 [14] CHEN W, JIM L. Calculation of antenna array far field impulse response using the finite-difference time-domain method[J]. Microwave and optical technology letters,2006,48(3):424-430. DOI: 10.1002/mop.21370 [15] 陈国华. 1978年实用盐标与中国标准海水[J]. 海洋技术,1982(3):22-23.CHEN G H. 1978 practical salt standard and China standard seawater[J]. Marine technology,1982(3):22-23. (in Chinese) -